Pre-class Warm-up
Consider the problem:
Find the entry in row 2 column 3 of the matrix product

$$
\left[\begin{array}{rr}
1 & 2 \\
3 & 4 \\
5 & 6
\end{array}\right]\left[\begin{array}{rrr}
1 & 0 & -1 \\
-1 & 2 & 1
\end{array}\right]
$$

Here's the question I shall ask you today: Find someone else who you can interview about this. Is that person able to do this calculation?

Answer:
a. Yes
b. No
2.1

How to understand functions of several variables More generally, $D \subseteq \mathbb{R}^{n}$
We learn: is an open subs
$7: D \rightarrow \mathbb{R}^{\text {ma }} f(D)$ is the range

- How to recognize n and m for a function

$$
f: R \wedge n->R \wedge m
$$

- Domain, range, target or codomain
- Describing a function by its graph
- Describing a function by its level sets \simeq contour
- Describing a function by sections Junes
- What some standard functions look like: paraboloids, saddle points.

What are n and m in the following functions $f: R \wedge n \rightarrow R \wedge m$? What are the domain and range?
a. $f(s, t)=(1,2,3)+s(0,-1,1)+t(1,0,2)$

$$
f: \mathbb{R}^{2} \longrightarrow \mathbb{R}^{3}
$$

domain target or codomain.

$$
h=2 \quad \quad m=3
$$

therange is a plane
b. $f(s)=(1,2,3)+s(0,-1,1)$

- ? $\mathrm{n}=1$ and $\mathrm{m}=1$
- ? $\mathrm{n}=3$ and $\mathrm{m}=1$
- ? $\mathrm{n}=1$ and $\mathrm{m}=3$

The graph of $f(x)=x^{\wedge} 2$.

The graph of $f(x, y)=x^{\wedge} 2+y^{\wedge} \mathbb{R}^{2}$ is the set of points $(x, y, f(x, y))$ in \mathbb{R}^{3}
When $y=0$ we get $\left(x, 0, x^{2}\right)$
If $x=0$ we $\operatorname{get}\left(0, y, y^{2}\right)^{\prime}$

The level sets of $f(x, y)=x \wedge 2+y \wedge 2$ are sets in the domain \mathbb{R}^{2} where $f(x, y)=c$ is constant.

Sections of $f(x, y)=x^{\wedge} 2+y^{\wedge} 2$ are the intersectuas of the graph with vesticalpanes.

$$
f(x, y)=\not x x \quad x^{2}-y^{2}
$$

Put $y=0$; up parabola
$x=0$: down parabola saddle point:

Level sets:

